Code: IT5T2

III B.Tech-I Semester-Regular / Supplementary Examinations March 2021

DESIGN METHODS AND ANALYSIS OF ALGORITHMS (INFORMATION TECHNOLOGY)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks

11x 2 = 22 M

1.

- a) Define algorithm and list the properties of a good algorithm.
- b) Define Big Oh class. Give 2 examples.
- c) What is meant by exhaustive search?
- d) State the difference between brute force approach and exhaustive search.
- e) State the basic principle of divide and conquer strategy.
- f) Define binary heap and its properties.
- g) What are disjoint sets? Give examples.
- h) Write the basic principle of dynamic programming.
- i)What are limitations of algorithms?
- j) Write the Knapsack problem statement.
- k) Give the solution tree for 4 queen's problem using backtracking.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

- 2. a) Explain the 3 asymptotic classes with examples. 8 M
 - b) Write iterative and recursive algorithms to find the factorial of given number and find time and space complexity of the algorithms.

 8 M
- 3. a) Write the algorithm for sequential search. Discuss the time complexity of the algorithm for best, worst and average case inputs.

 8 M
 - b) State the assignment problem.
 - c) Solve the following assignment problem with exhaustive search approach. No of persons = 4, No of jobs = 4

 Cost matrix: {P1: (9 2 7 8), P2: (6 4 3 7),

 P3: (5 8 1 8), P4: (7 6 9 4)}

 6 M

2 M

- 4. a) Write the algorithm to perform topological sorting and explain with an example. Analyse the time complexity of the algorithm.8 M
 - b) Illustrate with diagram the step by step procedure of constructing a binary min heap with following set of elements. 1, 3, 7, 5, 6, 8, 10, 9, 2. From the constructed heap, sort the elements in ascending order. 8 M

- 5. a) Write the algorithm to generate Huffman tree.
- 2 M
- b) Generate Huffman codes for the following input: (a, 0.35), (b, 0.1), (c, 0.2), (d,0.2), (-, 0.15). Compress the text BAD-AD-DAD.
- c) Solve the matrix chain multiplication problem for a chain of length 5 with order (4 10 3 12 20 7) 8 M
- 6. a) Write the backtracking algorithm to solve subset sum problem and apply the algorithm to solve the following problem: A = (1,3,4,5), d=11 10 M
 - b) Describe P, NP, NP hard and NP Complete problems. 6 M